CASE 1: IF today's date is NOT Friday THEN exit this CASE instruction ELSE
CASE 2: IF today's date is Friday AND the document is located at 'D:/My Documents' AND there is paper in the printer THEN print the document (and exit this CASE instruction) ELSE
CASE 3: IF today's date is Friday AND the document is NOT located at 'D:/My Documents' THEN display 'document not found' error message (and exit this CASE instruction) ELSE
CASE 4: IF today's date is Friday AND the document is located at 'D:/My Documents' AND there is NO paper in the printer THEN (i) display 'out of paper' error message and (ii) exit.
Note that CASE 3 includes two possibilities: (i) the document is NOT located at 'D:/My Documents' AND there's paper in the printer OR (ii) the document is NOT located at 'D:/My Documents' AND there's NO paper in the printer.
The sequence of IF-THEN-ELSE tests might look like this:
TEST 1: IF today's date is NOT Friday THEN done ELSE TEST 2:
TEST 2: IF the document is NOT located at 'D:/My Documents' THEN display 'document not found' error message ELSE TEST 3:
TEST 3: IF there is NO paper in the printer THEN display 'out of paper' error message ELSE print the document.
These examples' logic grants precedence to the instance of "NO document at 'D:/My Documents' ". Also observe that in a well-crafted CASE statement or sequence of IF-THEN-ELSE statements the number of distinct actions—4 in these examples: do nothing, print the document, display 'document not found', display 'out of paper' – equals the number of cases.
Given unlimited memory, a computational machine with the ability to execute either a set of CASE statements or a sequence of IF-THEN-ELSE statements is Turing complete. Therefore, anything that is computable can be computed by this machine. This form of algorithm is fundamental to computer programming in all its forms
Implementation
Most algorithms are intended to be implemented as computer programs. However, algorithms are also implemented by other means, such as in a biological neural network (for example, the human brain implementing arithmetic or an insect looking for food), in an electrical circuit, or in a mechanical device.
Assume the first item is largest.
Look at each of the remaining items in the list and if it is larger than the largest item so far, make a note of it.
The last noted item is the largest in the list when the process is complete.
(Quasi-)formal description Written in prose but much closer to the high-level language of a computer program, the following is the more formal coding of the algorithm in pseudocode or pidgin code.
Example
One of the simplest algorithms is to find the largest number in an (unsorted) list of numbers. The solution necessarily requires looking at every number in the list, but only once at each. From this follows a simple algorithm, which can be stated in a high-level description English prose, as:
High-level description:
Algorithm LargestNumber Input: A non-empty list of numbers L. Output: The largest number in the list L. largest ← L0 for each item in the list (Length(L)≥1), do if the item > largest, then largest ← the item return largest
- "←" is a loose shorthand for "changes to". For instance, "largest ← item" means that the value of largest changes to the value of item.
- "return" terminates the algorithm and outputs the value that follows.
For a more complex example of an algorithm,
Algorithmic analysis
It is frequently important to know how much of a particular resource (such as time or storage) is theoretically required for a given algorithm. Methods have been developed for the analysis of algorithms to obtain such quantitative answers (estimates); for example, the algorithm above has a time requirement of O(n), using the big O notation with n as the length of the list. At all times the algorithm only needs to remember two values: the largest number found so far, and its current position in the input list. Therefore it is said to have a space requirement of O(1), if the space required to store the input numbers is not counted, or O(n) if it is counted.
Different algorithms may complete the same task with a different set of instructions in less or more time, space, or 'effort' than others. For example, a binary search algorithm will usually outperform a brute force sequential search when used for table lookups on sorted lists.
Formal versus empirical
The analysis and study of algorithms is a discipline of computer science, and is often practiced abstractly without the use of a specific programming language or implementation. In this sense, algorithm analysis resembles other mathematical disciplines in that it focuses on the underlying properties of the algorithm and not on the specifics of any particular implementation. Usually pseudocode is used for analysis as it is the simplest and most general representation. However, ultimately, most algorithms are usually implemented on particular hardware / software platforms and their algorithmic efficiency is eventually put to the test using real code.
Empirical testing is useful because it may uncover unexpected interactions that affect performance. For instance an algorithm that has no locality of reference may have much poorer performance than predicted because it 'thrashes the cache'. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization.
Classification
There are various ways to classify algorithms, each with its own merits.
By implementation
One way to classify algorithms is by implementation means
Recursion or iteration: A recursive algorithm is one that invokes (makes reference to) itself repeatedly until a certain condition matches, which is a method common to functional programming. Iterative algorithms use repetitive constructs like loops and sometimes additional data structures like stacks to solve the given problems. Some problems are naturally suited for one implementation or the other. For example, towers of Hanoi is well understood in recursive implementation. Every recursive version has an equivalent (but possibly more or less complex) iterative version, and vice versa.
Logical: An algorithm may be viewed as controlled logical deduction. This notion may be expressed as: Algorithm = logic + control.[17] The logic component expresses the axioms that may be used in the computation and the control component determines the way in which deduction is applied to the axioms. This is the basis for the logic programming paradigm. In pure logic programming languages the control component is fixed and algorithms are specified by supplying only the logic component. The appeal of this approach is the elegant semantics: a change in the axioms has a well defined change in the algorithm.
Serial or parallel or distributed:Algorithms are usually discussed with the assumption that computers execute one instruction of an algorithm at a time. Those computers are sometimes called serial computers. An algorithm designed for such an environment is called a serial algorithm, as opposed to parallel algorithms or distributed algorithms. Parallel algorithms take advantage of computer architectures where several processors can work on a problem at the same time, whereas distributed algorithms utilize multiple machines connected with a network. Parallel or distributed algorithms divide the problem into more symmetrical or asymmetrical subproblems and collect the results back together. The resource consumption in such algorithms is not only processor cycles on each processor but also the communication overhead between the processors. Sorting algorithms can be parallelized efficiently, but their communication overhead is expensive. Iterative algorithms are generally parallelizable. Some problems have no parallel algorithms, and are called inherently serial problems.
Deterministic or non-deterministic:Deterministic algorithms solve the problem with exact decision at every step of the algorithm whereas non-deterministic algorithms solve problems via guessing although typical guesses are made more accurate through the use of heuristics.
Exact or approximate:While many algorithms reach an exact solution, approximation algorithms seek an approximation that is close to the true solution. Approximation may use either a deterministic or a random strategy. Such algorithms have practical value for many hard problems.
By design paradigm
Another way of classifying algorithms is by their design methodology or paradigm. There is a certain number of paradigms, each different from the other. Furthermore, each of these categories will include many different types of algorithms. Some commonly found paradigms include
Brute-force or exhaustive search.
This is the naïve method of trying every possible solution to see which is best
Divide and conquer.A divide and conquer algorithm repeatedly reduces an instance of a problem to one or more smaller instances of the same problem (usually recursively) until the instances are small enough to solve easily. One such example of divide and conquer is merge sorting. Sorting can be done on each segment of data after dividing data into segments and sorting of entire data can be obtained in the conquer phase by merging the segments. A simpler variant of divide and conquer is called a decrease and conquer algorithm, that solves an identical subproblem and uses the solution of this subproblem to solve the bigger problem. Divide and conquer divides the problem into multiple subproblems and so the conquer stage will be more complex than decrease and conquer algorithms. An example of decrease and conquer algorithm is the binary search algorithm.
Dynamic programming. When a problem shows optimal substructure, meaning the optimal solution to a problem can be constructed from optimal solutions to subproblems, and overlapping subproblems, meaning the same subproblems are used to solve many different problem instances, a quicker approach called dynamic programming avoids recomputing solutions that have already been computed. For example, the shortest path to a goal from a vertex in a weighted graph can be found by using the shortest path to the goal from all adjacent vertices. Dynamic programming and memoization go together. The main difference between dynamic programming and divide and conquer is that subproblems are more or less independent in divide and conquer, whereas subproblems overlap in dynamic programming. The difference between dynamic programming and straightforward recursion is in caching or memoization of recursive calls. When subproblems are independent and there is no repetition, memoization does not help; hence dynamic programming is not a solution for all complex problems. By using memoization or maintaining a table of subproblems already solved, dynamic programming reduces the exponential nature of many problems to polynomial complexity.
The greedy method.A greedy algorithm is similar to a dynamic programming algorithm, but the difference is that solutions to the subproblems do not have to be known at each stage; instead a "greedy" choice can be made of what looks best for the moment. The greedy method extends the solution with the best possible decision (not all feasible decisions) at an algorithmic stage based on the current local optimum and the best decision (not all possible decisions) made in a previous stage. It is not exhaustive, and does not give accurate answer to many problems. But when it works, it will be the fastest method. The most popular greedy algorithm is finding the minimal spanning tree as given by Kruskal.
Linear programming. When solving a problem using linear programming, specific inequalities involving the inputs are found and then an attempt is made to maximize (or minimize) some linear function of the inputs. Many problems (such as the maximum flow for directed graphs) can be stated in a linear programming way, and then be solved by a 'generic' algorithm such as the simplex algorithm. A more complex variant of linear programming is called integer programming, where the solution space is restricted to the integers.
ReductionThis technique involves solving a difficult problem by transforming it into a better known problem for which we have (hopefully) asymptotically optimal algorithms. The goal is to find a reducing algorithm whose complexity is not dominated by the resulting reduced algorithm's. For example, one selection algorithm for finding the median in an unsorted list involves first sorting the list (the expensive portion) and then pulling out the middle element in the sorted list (the cheap portion). This technique is also known as transform and conquer..
Search and enumeration. Many problems (such as playing chess) can be modeled as problems on graphs. A graph exploration algorithm specifies rules for moving around a graph and is useful for such problems. This category also includes search algorithms, branch and bound enumeration and backtracking.
1: Randomized algorithms Randomized algorithms are those that make some choices randomly (or pseudo-randomly); for some problems, it can in fact be proven that the fastest solutions must involve some randomness. There are two large classes of such algorithms:
1: Monte Carlo algorithms return a correct answer with high-probability. E.g. RP is the subclass of these that run in polynomial time)
2:Las Vegas algorithms always return the correct answer, but their running time is only probabilistically bound, e.g. ZPP.
2: In optimization problems, heuristic algorithms do not try to find an optimal solution, but an approximate solution where the time or resources are limited. They are not practical to find perfect solutions. An example of this would be local search, tabu search, or simulated annealing algorithms, a class of heuristic probabilistic algorithms that vary the solution of a problem by a random amount. The name "simulated annealing" alludes to the metallurgic term meaning the heating and cooling of metal to achieve freedom from defects. The purpose of the random variance is to find close to globally optimal solutions rather than simply locally optimal ones, the idea being that the random element will be decreased as the algorithm settles down to a solution. Approximation algorithms are those heuristic algorithms that additionally provide some bounds on the error. Genetic algorithms attempt to find solutions to problems by mimicking biological evolutionary processes, with a cycle of random mutations yielding successive generations of "solutions". Thus, they emulate reproduction and "survival of the fittest". In genetic programming, this approach is extended to algorithms, by regarding the algorithm itself as a "solution" to a problem.
By field of study
Every field of science has its own problems and needs efficient algorithms. Related problems in one field are often studied together. Some example classes are search algorithms, sorting algorithms, merge algorithms, numerical algorithms, graph algorithms, string algorithms, computational geometric algorithms, combinatorial algorithms, machine learning, cryptography, data compression algorithms and parsing techniques.
Fields tend to overlap with each other, and algorithm advances in one field may improve those of other, sometimes completely unrelated, fields. For example, dynamic programming was invented for optimization of resource consumption in industry, but is now used in solving a broad range of problems in many fields.
By complexity
Algorithms can be classified by the amount of time they need to complete compared to their input size. There is a wide variety: some algorithms complete in linear time relative to input size, some do so in an exponential amount of time or even worse, and some never halt. Additionally, some problems may have multiple algorithms of differing complexity, while other problems might have no algorithms or no known efficient algorithms. There are also mappings from some problems to other problems. Owing to this, it was found to be more suitable to classify the problems themselves instead of the algorithms into equivalence classes based on the complexity of the best possible algorithms for them
By computing power
Another[dubious – discuss] way to classify algorithms is by computing power. This is typically done by considering some collection (class) of algorithms. A recursive class of algorithms is one that includes algorithms for all Turing computable functions. Looking at classes of algorithms allows for the possibility of restricting the available computational resources (time and memory) used in a computation. A subrecursive class of algorithms is one in which not all Turing computable functions can be obtained. For example, the algorithms that run in polynomial time suffice for many important types of computation but do not exhaust all Turing computable functions. The class of algorithms implemented by primitive recursive functions is another subrecursive class.
Burgin (2005, p. 24) uses a generalized definition of algorithms that relaxes the common requirement that the output of the algorithm that computes a function must be determined after a finite number of steps. He defines a super-recursive class of algorithms as "a class of algorithms in which it is possible to compute functions not computable by any Turing machine" (Burgin 2005, p. 107). This is closely related to the study of methods of hypercomputation.
Legal issues
- See also: Software patents for a general overview of the patentability of software, including computer-implemented algorithms.
- Algorithms, by themselves, are not usually patentable. In the United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), and hence algorithms are not patentable (as in Gottschalk v. Benson). However, practical applications of algorithms are sometimes patentable. For example, in Diamond v. Diehr, the application of a simple feedback algorithm to aid in the curing of synthetic rubber was deemed patentable. The patenting of software is highly controversial, and there are highly criticized patents involving algorithms, especially data compression algorithms, such as Unisys' LZW patent.
- Additionally, some cryptographic algorithms have export restrictions (see export of cryptography).
History: Development of the notion of "algorithm"
Discrete and distinguishable symbols
Tally-marks:To keep track of their flocks, their sacks of grain and their money the ancients used tallying: accumulating stones or marks scratched on sticks, or making discrete symbols in clay. Through the Babylonian and Egyptian use of marks and symbols, eventually Roman numerals and the abacus evolved (Dilson, p. 16–41). Tally marks appear prominently in unary numeral system arithmetic used in Turing machine and Post–Turing machine computations.Manipulation of symbols as "place holders" for numbers: algebra
The work of the ancient Greek geometers, Persian mathematician Al-Khwarizmi (often considered the "father of algebra" and from whose name the terms "algorism" and "algorithm" are derived), and Western European mathematicians culminated in Leibniz's notion of the calculus ratiocinator (ca 1680):A good century and a half ahead of his time, Leibniz proposed an algebra of logic, an algebra that would specify the rules for manipulating logical concepts in the manner that ordinary algebra specifies the rules for manipulating numbersMechanical contrivances with discrete states
The clock:Bolter credits the invention of the weight-driven clock as "The key invention [of Europe in the Middle Ages]", in particular the verge escapement[20] that provides us with the tick and tock of a mechanical clock. "The accurate automatic machine"[21] led immediately to "mechanical automata" beginning in the thirteenth century and finally to "computational machines" – the difference engine and analytical engines of Charles Babbage and Countess Ada LovelaceLogical machines 1870 – Stanley Jevons' "logical abacus" and "logical machine"- The technical problem was to reduce Boolean equations when presented in a form similar to what are now known as Karnaugh maps. Jevons (1880) describes first a simple "abacus" of "slips of wood furnished with pins, contrived so that any part or class of the [logical] combinations can be picked out mechanically . . . More recently however I have reduced the system to a completely mechanical form, and have thus embodied the whole of the indirect process of inference in what may be called a Logical Machine" His machine came equipped with "certain moveable wooden rods" and "at the foot are 21 keys like those of a piano [etc] . . .". With this machine he could analyze a "syllogism or any other simple logical argument".[23]
This machine he displayed in 1870 before the Fellows of the Royal Society.[24] Another logician John Venn, however, in his 1881 Symbolic Logic, turned a jaundiced eye to this effort: "I have no high estimate myself of the interest or importance of what are sometimes called logical machines ... it does not seem to me that any contrivances at present known or likely to be discovered really deserve the name of logical machines"; see more at Algorithm characterizations. But not to be outdone he too presented "a plan somewhat analogous, I apprehend, to Prof. Jevon's abacus ... [And] [a]gain, corresponding to Prof. Jevons's logical machine, the following contrivance may be described. I prefer to call it merely a logical-diagram machine ... but I suppose that it could do very completely all that can be rationally expected of any logical machine"Jacquard loom, Hollerith punch cards, telegraphy and telephony — the electromechanical relay:Bell and Newell (1971) indicate that the Jacquard loom (1801), precursor to Hollerith cards (punch cards, 1887), and "telephone switching technologies" were the roots of a tree leading to the development of the first computers.[26] By the mid-1800s the telegraph, the precursor of the telephone, was in use throughout the world, its discrete and distinguishable encoding of letters as "dots and dashes" a common sound. By the late 1800s the ticker tape (ca 1870s) was in use, as was the use of Hollerith cards in the 1890 U.S. census. Then came the Teletype (ca. 1910) with its punched-paper use of Baudot code on tape.Telephone-switching networks
- of electromechanical relays (invented 1835) was behind the work of George Stibitz (1937), the inventor of the digital adding device. As he worked in Bell Laboratories, he observed the "burdensome' use of mechanical calculators with gears. "He went home one evening in 1937 intending to test his idea... When the tinkering was over, Stibitz had constructed a binary adding device".
Davis (2000) observes the particular importance of the electromechanical relay (with its two "binary states" open and closed):- It was only with the development, beginning in the 1930s, of electromechanical calculators using electrical relays, that machines were built having the scope Babbage had envisioned